Как исследовать функцию и построить график. Исследование функций и построение графиков


Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

Если в задаче необходимо произвести полное исследование функции f (x) = x 2 4 x 2 - 1 с построением его графика, тогда рассмотрим этот принцип подробно.

Для решения задачи данного типа следует использовать свойства и графики основных элементарных функций. Алгоритм исследования включает в себя шаги:

Yandex.RTB R-A-339285-1

Нахождение области определения

Так как исследования проводятся на области определения функции, необходимо начинать с этого шага.

Пример 1

Заданный пример предполагает нахождение нулей знаменателя для того, чтобы исключить их из ОДЗ.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2 ; 1 2 ∪ 1 2 ; + ∞

В результате можно получить корни, логарифмы, и так далее. Тогда ОДЗ можно искать для корня четной степени типа g (x) 4 по неравенству g (x) ≥ 0 , для логарифма log a g (x) по неравенству g (x) > 0 .

Исследование границ ОДЗ и нахождение вертикальных асимптот

На границах функции имеются вертикальные асимптоты, когда односторонние пределы в таких точках бесконечны.

Пример 2

Для примера рассмотрим приграничные точки, равные x = ± 1 2 .

Тогда необходимо проводить исследование функции для нахождения одностороннего предела. Тогда получаем, что: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) · 2 = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (+ 0) · 2 = + ∞

Отсюда видно, что односторонние пределы являются бесконечными, значит прямые x = ± 1 2 - вертикальные асимптоты графика.

Исследование функции и на четность или нечетность

Когда выполняется условие y (- x) = y (x) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у. Когда выполняется условие y (- x) = - y (x) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y (- x) = y (x) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у.

Для решениянеравенства применяются промежутки возрастания и убывания с условиями f " (x) ≥ 0 и f " (x) ≤ 0 соответственно.

Определение 1

Стационарные точки – это такие точки, которые обращают производную в ноль.

Критические точки - это внутренние точки из области определения, где производная функции равняется нулю или не существует.

При решении необходимо учитывать следующие замечания:

  • при имеющихся промежутках возрастания и убывания неравенства вида f " (x) > 0 критические точки в решение не включаются;
  • точки, в которых функция определена без конечной производной, необходимо включать в промежутки возрастания и убывания (к примеру, y = x 3 , где точка х = 0 делает функцию определенной, производная имеет значение бесконечности в этой точке, y " = 1 3 · x 2 3 , y " (0) = 1 0 = ∞ , х = 0 включается в промежуток возрастания);
  • во избежание разногласий рекомендовано пользоваться математической литературой, которая рекомендована министерством образования.

Включение критических точек в промежутки возрастания и убывания в том случае, если они удовлетворяют области определения функции.

Определение 2

Для определения промежутков возрастания и убывания функции необходимо найти :

  • производную;
  • критические точки;
  • разбить область определения при помощи критических точек на интервалы;
  • определить знак производной на каждом из промежутков, где + является возрастанием, а - является убыванием.

Пример 3

Найти производную на области определения f " (x) = x 2 " (4 x 2 - 1) - x 2 4 x 2 - 1 " (4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2 .

Решение

Для решения нужно:

  • найти стационарные точки, данный пример располагает х = 0 ;
  • найти нули знаменателя, пример принимает значение ноль при x = ± 1 2 .

Выставляем точки на числовой оси для определения производной на каждом промежутке. Для этого достаточно взять любую точку из промежутка и произвести вычисление. При положительном результате на графике изображаем + , что означает возрастание функции, а - означает ее убывание.

Например, f " (- 1) = - 2 · (- 1) 4 - 1 2 - 1 2 = 2 9 > 0 , значит, первый интервал слева имеет знак + . Рассмотрим на числовой прямой.

Ответ:

  • происходит возрастание функции на промежутке - ∞ ; - 1 2 и (- 1 2 ; 0 ] ;
  • происходит убывание на промежутке [ 0 ; 1 2) и 1 2 ; + ∞ .

На схеме при помощи + и - изображается положительность и отрицательность функции, а стрелочки – убывание и возрастание.

Точки экстремума функции – точки, где функция определена и через которые производная меняет знак.

Пример 4

Если рассмотреть пример, где х = 0 , тогда значение функции в ней равняется f (0) = 0 2 4 · 0 2 - 1 = 0 . При перемене знака производной с + на - и прохождении через точку х = 0 , тогда точка с координатами (0 ; 0) считается точкой максимума. При перемене знака с - на + получаем точку минимума.

Выпуклость и вогнутость определяется при решении неравенств вида f "" (x) ≥ 0 и f "" (x) ≤ 0 . Реже используют название выпуклость вниз вместо вогнутости, а выпуклость вверх вместо выпуклости.

Определение 3

Для определения промежутков вогнутости и выпуклости необходимо:

  • найти вторую производную;
  • найти нули функции второй производной;
  • разбить область определения появившимися точками на интервалы;
  • определить знак промежутка.

Пример 5

Найти вторую производную из области определения.

Решение

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2 " (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Находим нули числителя и знаменателя, где на примере нашего примера имеем, что нули знаменателя x = ± 1 2

Теперь необходимо нанести точки на числовую ось и определить знак второй производной из каждого промежутка. Получим, что

Ответ:

  • функция является выпуклой из промежутка - 1 2 ; 1 2 ;
  • функция является вогнутой из промежутков - ∞ ; - 1 2 и 1 2 ; + ∞ .

Определение 4

Точка перегиба – это точка вида x 0 ; f (x 0) . Когда в ней имеется касательная к графику функции, то при ее прохождении через x 0 функция изменяет знак на противоположный.

Иначе говоря, это такая точка, через которую проходит вторая производная и меняет знак, а в самих точках равняется нулю или не существует. Все точки считаются областью определения функции.

В примере было видно, что точки перегиба отсутствуют, так как вторая производная изменяет знак во время прохождения через точки x = ± 1 2 . Они, в свою очередь, в область определения не входят.

Нахождение горизонтальных и наклонных асимптот

При определении функции на бесконечности нужно искать горизонтальные и наклонные асимптоты.

Определение 5

Наклонные асимптоты изображаются при помощи прямых, заданных уравнением y = k x + b , где k = lim x → ∞ f (x) x и b = lim x → ∞ f (x) - k x .

При k = 0 и b , не равному бесконечности, получаем, что наклонная асимптота становится горизонтальной .

Иначе говоря, асимптотами считают линии, к которым приближается график функции на бесконечности. Это способствует быстрому построению графика функции.

Если асимптоты отсутствуют, но функция определяется на обеих бесконечностях, необходимо посчитать предел функции на этих бесконечностях, чтобы понять, как себя будет вести график функции.

Пример 6

На примере рассмотрим, что

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

является горизонтальной асимптотой. После исследования функции можно приступать к ее построению.

Вычисление значения функции в промежуточных точках

Чтобы построение графика было наиболее точным, рекомендовано находить несколько значений функции в промежуточных точках.

Пример 7

Из рассмотренного нами примера необходимо найти значения функции в точках х = - 2 , х = - 1 , х = - 3 4 , х = - 1 4 . Так как функция четная, получим, что значения совпадут со значениями в этих точках, то есть получим х = 2 , х = 1 , х = 3 4 , х = 1 4 .

Запишем и решим:

F (- 2) = f (2) = 2 2 4 · 2 2 - 1 = 4 15 ≈ 0 , 27 f (- 1) - f (1) = 1 2 4 · 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 · 1 4 2 - 1 = - 1 12 ≈ - 0 , 08

Для определения максимумов и минимумов функции, точек перегиба, промежуточных точек необходимо строить асимптоты. Для удобного обозначения фиксируются промежутки возрастания, убывания, выпуклость, вогнутость. Рассмотрим на рисунке, изображенном ниже.

Необходимо через отмеченные точки проводить линии графика, что позволит приблизить к асимптотам, следуя стрелочкам.

На этом заканчивается полное исследование функции. Встречаются случаи построения некоторых элементарных функций, для которых применяют геометрические преобразования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

РЕФЕРАТ

«Полное исследование функции и построение её графика».

ВВЕДЕНИЕ

Изучение свойств функции и построение ее графика являются одним из самых замечательных приложений производной. Этот способ исследования функции неоднократно подвергался тщательному анализу. Основная причина состоит в том, что в приложениях математики приходилось иметь дело с более и более сложными функциями, появляющимися при изучении новых явлений. Появились исключения из разработанных математикой правил, появились случаи, когда вообще созданные правила не годились, появились функции, не имеющие ни в одной точке производной.

Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций.

Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает старшеклассникам получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.

    Возрастание и убывание функции

Решение различных задач из области математики, физики и техники приводит к установлению функциональной зависимости между участвующими в данном явлении переменными величинами.

Если такую функциональную зависимость можно выразить аналитически, то есть в виде одной или нескольких формул, то появляется возможность исследовать ее средствами математического анализа.

Имеется в виду возможность выяснения поведения функции при изменении той или иной переменной величины (где функция возрастает, где убывает, где достигает максимума и т.д.).

Применение дифференциального исчисления к исследованию функции опирается на весьма простую связь, существующую между поведением функции и свойствами ее производной, прежде всего ее первой и второй производной.

Рассмотрим, как можно находить интервалы возрастания или убывания функции, то есть интервалы ее монотонности. Исходя из определения монотонно убывающей и возрастающей функции, можно сформулировать теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности.

Теорема 1.1 . Если функция y = f ( x ) , дифференцируемая на интервале ( a , b ) , монотонно возрастает на этом интервале, то в любой его точке
( x ) >0; если она монотонно убывает, то в любой точке интервала ( x )<0.

Доказательство. Пусть функция y = f ( x ) монотонно возрастает на ( a , b ) , значит, для любого достаточно малого > 0 выполняется неравенство:

f ( x - ) < f ( x ) < f ( x + ) (рис. 1.1).

Рис. 1.1

Рассмотрим предел

.

Если > 0, то > 0, если < 0, то

< 0.

В обоих случаях выражение под знаком предела положительно, значит, и предел положителен, то есть ( x )>0 , что и требовалось доказать. Аналогично доказывается и вторая часть теоремы, связанная с монотонным убыванием функции.

Теорема 1.2 . Если функция y = f ( x ) , непрерывна на отрезке [ a , b ] и дифференцируема во всех его внутренних точках, и, кроме того, ( x ) >0 для любого x ϵ ( a , b ) , то данная функция монотонно возрастает на ( a , b ) ; если

( x ) <0 для любого ( a , b ), то данная функция монотонно убывает на ( a , b ) .

Доказательство. Возьмем ϵ ( a , b ) и ϵ ( a , b ) , причем < . По теореме Лагранжа

( c ) = .

Но ( c )>0 и > 0, значит, ( > 0, то есть

(. Полученный результат указывает на монотонное возрастание функции, что и требовалось доказать. Аналогично доказывается вторая часть теоремы.

    Экстремумы функции

При исследовании поведения функции особую роль играют точки, которые отделяют друг от друга интервалы монотонного возрастания от интервалов ее монотонного убывания.

Определение 2.1 . Точка называется точкой максимума функции

y = f ( x ) , если для любого, сколь угодно малого , ( < 0 , а точка называется точкой минимума, если ( > 0.

Точки минимума и максимума имеют общее название точек экстремума. У кусочно-монотонной функции таких точек конечное число на конечном интервале (рис. 2.1).

Рис. 2.1

Теорема 2.1 (необходимое условие существования экстремума) . Если дифференцируемая на интервале ( a , b ) функция имеет в точке из этого интервала максимум, то ее производная в этой точке равна нулю. То же самое можно сказать и о точке минимума .

Доказательство этой теоремы следует из теоремы Ролля, в которой было показано, что в точках минимума или максимума = 0, и касательная, проведенная к графику функции в этих точках, параллельна оси OX .

Из теоремы 2.1 вытекает, что если функция y = f ( x ) имеет производную во всех точках, то она может достигать экстремума в тех точках, где = 0.

Однако данное условие не является достаточным, так как существуют функции, у которых указанное условие выполняется, но экстремума нет. Например, у функции y = в точке x = 0 производная равна нулю, однако экстремума в этой точке нет. Кроме того, экстремум может быть в тех точках, где производная не существует. Например, у функции y = | x | есть минимум в точке x = 0 , хотя производная в этой точке не существует.

Определение 2.2 . Точки, в которых производная функции обращается в ноль или терпит разрыв, называются критическими точками данной функции .

Следовательно, теоремы 2.1 недостаточно для определения экстремальных точек.

Теорема 2.2 (достаточное условие существования экстремума) . Пусть функция y = f ( x ) непрерывна на интервале ( a , b ) , который содержит ее критическую точку , и дифференцируема во всех точках этого интервала, за исключением, быть может, самой точки . Тогда, если при переходе этой точки слева направо знак производной меняется с плюса на минус, то это точка максимума, и, наоборот, с минуса на плюс – точка минимума .

Доказательство. Если производная функции меняет свой знак при переходе точки слева направо с плюса на минус, то функция переходит от возрастания к убыванию, то есть достигает в точке своего максимума и наоборот.

Из вышесказанного следует схема исследования функции на экстремум:

1) находят область определения функции;

2) вычисляют производную;

3) находят критические точки;

4) по изменению знака первой производной определяют их характер.

Не следует путать задачу исследования функции на экстремум с задачей определения минимального и максимального значения функции на отрезке. Во втором случае необходимо найти не только экстремальные точки на отрезке, но и сравнить их со значением функции на его концах.

    Интервалы выпуклости и вогнутости функции

Еще одной характеристикой графика функции, которую можно определять с помощью производной, является его выпуклость или вогнутость.

Определение 3.1 . Функция y = f ( x ) называется выпуклой на промежутке ( a , b ) , если ее график расположен ниже любой касательной, проведенной к нему на данном промежутке, и наоборот, называется вогнутой, если ее график окажется выше любой касательной, проведенной к нему на данном промежутке .

Докажем теорему, позволяющую определять интервалы выпуклости и вогнутости функции.

Теорема 3.1 . Если во всех точках интервала ( a , b ) вторая производная функции ( x ) непрерывна и отрицательна, то функция y = f ( x ) выпукла и наоборот, если вторая производная непрерывна и положительна, то функция вогнута .

Доказательство проведем для интервала выпуклости функции. Возьмем произвольную точку ϵ ( a , b ) и проведем в этой точке касательную к графику функции y = f ( x ) (рис. 3.1).

Теорема будет доказана, если будет показано, что все точки кривой на промежутке ( a , b ) лежат под этой касательной. Иначе говоря, необходимо доказать, что для одних и тех же значений x ординаты кривой y = f ( x ) меньше, чем ординаты касательной, проведенной к ней в точке .

Рис. 3.1

Для определенности обозначим уравнение кривой: = f ( x ) , а уравнение касательной к ней в точке :

- f ( ) = ( )( x - )

или

= f ( ) + ( )( x - ) .

Составим разность и :

- = f(x) – f( ) - ( )(x- ).

Применим к разности f ( x ) – f ( ) теорему о среднем Лагранжа:

- = ( )( x - ) - ( )( x - ) = ( x - )[ ( ) - ( )] ,

где ϵ ( , x ).

Применим теперь теорему Лагранжа к выражению в квадратных скобках:

- = ( )( - )( x - ) , где ϵ ( , ).

Как видно из рисунка, x > , тогда x - > 0 и - > 0 . Кроме того, по условию теоремы, ( )<0.

Перемножая эти три множителя, получим, что , что и требовалось доказать.

Определение 3.2 . Точка, отделяющая интервал выпуклости от интервала вогнутости, называется точкой перегиба .

Из определения 3.1 следует, что в данной точке касательная пересекает кривую, то есть с одной стороны кривая расположена ниже касательной, а с другой – выше.

Теорема 3.2 . Если в точке вторая производная функции

y = f ( x ) равна нулю или не существует, а при переходе через точку знак второй производной меняется на противоположный, то данная точка является точкой перегиба .

Доказательство данной теоремы следует из того, что знаки ( x ) по разные стороны от точки различны. Значит, с одной стороны от точки функция выпукла, а с другой – вогнута. В этом случае, согласно определению 3.2, точка является точкой перегиба.

Исследование функции на выпуклость и вогнутость проводится по той же схеме, что и исследование на экстремум.

4. Асимптоты функции

В предыдущих пунктах были рассмотрены методы исследования поведения функции с помощью производной. Однако среди вопросов, касающихся полного исследования функции, есть и такие, которые с производной не связаны.

Так, например, необходимо знать, как ведет себя функция при бесконечном удалении точки ее графика от начала координат. Такая проблема может возникнуть в двух случаях: когда аргумент функции уходит на бесконечность и когда при разрыве второго рода в конечной точке уходит на бесконечность сама функция. В обоих этих случаях может возникнуть ситуация, когда функция будет стремиться к некоторой прямой, называемой ее асимптотой.

Определение . Асимптотой графика функции y = f ( x ) называется прямая линия, обладающая тем свойством, что расстояние от графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат .

Различают два типа асимптот: вертикальные и наклонные.

К вертикальным асимптотам относятся прямые линии x = , которые обладают тем свойством, что график функции в их окрестности уходит на бесконечность, то есть, выполняется условие: .

Очевидно, что здесь удовлетворяется требование указанного определения: расстояние от графика кривой до прямой x = стремится к нулю, а сама кривая при этом уходит на бесконечность. Итак, в точках разрыва второго рода функции имеют вертикальные асимптоты, например, y = в точке x = 0 . Следовательно, определение вертикальных асимптот функции совпадает с нахождением точек разрыва второго рода.

Наклонные асимптоты описываются общим уравнением прямой линии на плоскости, то есть y = kx + b . Значит, в отличие от вертикальных асимптот, здесь необходимо определить числа k и b .

Итак, пусть кривая = f ( x ) имеет наклонную асимптоту, то есть при x точки кривой сколь угодно близко подходят к прямой = kx + b (рис. 4.1). Пусть M ( x , y ) - точка, расположенная на кривой. Ее расстояние от асимптоты будет характеризоваться длиной перпендикуляра | MN | .

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

Построение графика функции по особенным точкам включает в себя исследование самой функции: определение области допустимых значений аргумента, определение области изменения функции, определение четности или нечетности функции, определение точек разрыва функции, нахождение интервалов знакопостоянства функции, нахождение асимптот графика функции. С помощью первой производной можно определить интервалы возрастания (убывания) функции, наличие точек экстремума. По второй производной можно определить интервалы выпуклости (вогнутости) графика функции, а также точки перегиба. При этом считаем, что если в некоторой точке xo касательная к графику функции выше кривой, то график функции в этой точке имеет выпуклость; если же касательная ниже кривой, то график функции в этой точке имеет вогнутость.

y(x) = x³/(x²+3)

1. Исследование функции.

а) Область допустимых значений аргумента: (-∞,+∞).

б) Область изменения функции: (-∞, +∞).

в) Функция является нечетной, т.к. y(-x) = -y(x), т.е. график функции симметричен относительно начала координат.

г) Функция является непрерывной, точек разрыва нет, следовательно, нет вертикальных асимптот.

д) Нахождение уравнения наклонной асимптоты y(x) = k∙x + b , где

k = /x и b =

В данном примере параметры асимптоты соответственно равны:

k = , т.к. старшая степень числителя и знаменателя одинаковые, равные трем, а отношение коэффициентов при этих старших степенях равно единице. При x→+ ∞ для вычисления предела использовали третий замечательный предел.

b = = = 0, при вычислении предела при x→+ ∞ воспользовались третьим замечательным пределом. Итак, график данной функции имеет наклонную асимптоту y=x.

2.

y´= /(x²+3)² - производная вычислена с помощью формулы дифференцирования частного.

а) Определяем нули производной и точки разрыва, приравнивая соответственно числитель и знаменатель производной нулю: y´=0, еслиx=0. Точек разрыва 1-я производная не имеет.

б) Определяем интервалы знакопостоянства производной, т.е. интервалы монотонности функции: при -∞производная положительна, следовательно, функция возрастает; при 0≤x<+∞, производная продолжает оставаться положительной, т.е. функция так же возрастает.

3. Исследование функции с помощью 2-ой производной.

Используя формулу дифференцирования частного и произведя алгебраические преобразования, полечим: y´´ = /(x²+3)³


а) Определяем нули 2-ой производной и интервалы знакопостоянства: y´´ = 0, если x=0 иx=+ 3 . Точек разрыва у 2-ой производной нет.

б) Определим интервалы закопостоянства 2-ой производной, т.е. интервалы выпуклости или вогнутости графика функции. При -∞и при0вторая производная y´´>0 , т.е. график функции вогнутый. При -3и при3вторая производная y´´<0, т.е. график функции выпуклый. Так как в точках x=0 и x=+ 3 вторая производная равна нулю, а ее знак меняется, то эти точки являются точками перегиба графика функции (рис.4).

Пример: исследовать функцию и построить ее график y(x)=((x-1)²∙(x+1))/x

1.Исследование функции.

а) Область допустимых значений: (-∞,0)U(0,+∞).

б) Область изменения функции: (-∞,+∞).

г) Данная функция имеет точку разрыва 2-ого рода при x=0.

д) Нахождение асимптот. Т.к. функция имеет точку разрыва 2-ого рода при x=0 , то следовательно, функция имеет вертикальную асимптоту x=0. Наклонных или горизонтальных асимптот данная функция не имеет.

2.Исследование функции с помощью 1-ой производной.

Преобразуем функцию, произведя все алгебраические действия. В результате вид функции значительно упростится: y(x)=x²-x-1+(1/x). От суммы слагаемых очень просто брать производную и получим: y´ = 2x – 1 –(1/x²).

а) Определяем нули и точки разрыва 1-ой производной. Приводим выражения для 1-ой производной к общему знаменателю и, приравняв числитель, а затем и знаменатель нулю, получим: y´=0 приx=1, y´ - не существуетприx=0.

б) Определим интервалы монотонности функции, т.е. интервалы знакопостоянства производной. При -∞<x<0 и0первая производнаяy´<0, следовательно, функция убывает. При 1≤x<∞ первая производнаяy´>0, следовательно, функция возрастает. В точке x=1 первая производная меняет знак с минуса на плюс, следовательно, в этой точке функция имеет минимум. Минимум пологий, т.к. при x=1 производнаяy´=0.

3.

y´´= 2 + 2/x³ . По 2-ой производной определим интервалы выпуклости или вогнутости графика функции, а также, если они имеются, точки перегиба. Приведем выражение для второй производной к общему знаменателю, а затем, приравнивая нулю поочередно числитель и знаменатель, получим: y´´=0 при x=-1, y´´- не существуетпри x=0.

При -∞и при 00 – график функции вогнутый. При -1≤x<0 – график функции выпуклый. Т.к. в точке x=-1 вторая производная меняет знак с плюса на минус, то точка x=-1 – точка перегиба графика функции (рис.5).

рис. 4 рис. 5

Пример: исследовать функцию и построить ее график y(x) = ln (x²+4x+5)

1.Исследование функции.

а) Область допустимых значений аргумента: логарифмическая функция существует только для аргументов строго больше нуля, следовательно, x²+4x+5>0 – это условие выполняется при всех значениях аргумента, т.е. О.Д.З. – (-∞, +∞).

б) Область изменения функции: (0, +∞). Преобразуем выражение, стоящее под знаком логарифма, и приравниваем функцию нулю: ln((x+2)²+1) =0. Т.е. функция обращается в ноль при x=-2. График функции будет симметричен относительно прямой x=-2.

в) Функция непрерывная, точек разрыва не имеет.

г) Асимптот у графика функции нет.

2.Исследование функции с помощью 1-ой производной.

Используя правило дифференцирования сложной функции, получим: y´= (2x+4)/(x²+4x+5)

а) Определим нули и точки разрыва производной: y´=0, при x=-2. Точек разрыва первая производная не имеет.

б) Определяем интервалы монотонности функции, т.е. интервалы знакопостоянства первой производной: при -∞<x<-2 производнаяy´<0, следовательно, функция убывает;при -2 производнаяy´>0, следовательно, функция возрастает. Так как производная в точке x=-2 меняет знак с минуса на плюс, то в этой точке функция имеет минимум (пологий).

3.Исследование функции по 2-ой производной.

Представим первую производную в следующем виде: y´=2∙(x+2)/(1+(x+2)²). y´´=2∙(1-(x+2)²/(1+(x+2)²)².

а) Определим интервалы знакопостоянства второй производной. Так как знаменатель 2-ой производной всегда неотрицателен, то знак второй производной определяется только числителем. y´´=0 при x=-3 иx=-1.

При -∞и при-1вторая производная y´´<0, следовательно, график функции на этих интервалах выпуклый. При -3вторая производная y´´>0, следовательно, график функции на этом интервале – вогнутый. Точки x=-3 и x=-1 – точки перегиба графика функции, т.к. в этих точках происходит перемена знаки второй производной, а сама вторая производная обращается в ноль (рис.6).

Пример: исследовать функцию и построить график y(x) = x²/(x+2)²

1.Исследование функции.

а) Область допустимых значений аргумента (-∞, -2)U(-2, +∞).

б) Область изменения функции ².

а) Определим нули и интервалы знакопостоянства второй производной. Т.к. знаменатель дроби всегда положителен, то знак второй производной полностью определяется числителем. При -∞и при-2вторая производнаяy´´>0 , следовательно, график функции на этих интервалах – вогнутый; при1≤x<+∞ вторая производная y´´<0 , следовательно, график функции на этом интервале имеет выпуклость. При переходе через точку x=1 , знак второй производной меняется с плюса на минус, т.е. эта точка является точкой перегиба графика функции. При x→+∞ график функции асимптотически приближается к своей горизонтальной асимптоте y=1 снизу. При x→ -∞ , график приближается к своей горизонтальной асимптоте сверху (рис.7).