Как подключить контроллер заряда li ion аккумулятора. Микросхемы управления зарядом аккумуляторов компании ON Semiconductor. Итак, вот та самая модификация «народной» платки


Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Не секрет, что Li-ion аккумуляторы не любят глубокого разряда. От этого они хиреют и чахнут, а также увеличивают внутреннее сопротивление и теряют емкость. Некоторые экземпляры (те, которые с защитой) могут даже погрузиться в глубокую спячку, откуда их довольно проблематично вытаскивать. Поэтому при использовании литиевых аккумуляторов необходимо как-то ограничить их максимальный разряд.

Для этого применяют специальные схемы, отключающие батарею от нагрузки в нужный момент. Иногда такие схемы называют контроллерами разряда.

Т.к. контроллер разряда не управляет величиной тока разряда, он, строго говоря, никаким контроллером не является. На самом деле это устоявшееся, но некорректное название схем защиты от глубокого разряда.

Вопреки распространенному мнению, встроенные в аккумуляторы (PCB-платы или PCM-модули) не предназначены ни для ограничения тока заряда/разряда, ни для своевременного отключения нагрузки при полном разряде, ни для корректного определения момента окончания заряда.

Во-первых, платы защиты в принципе не способны ограничивать ток заряда или разряда. Этим должно заниматься ЗУ. Максимум, на что они способны - это вырубить аккумулятор при коротком замыкании в нагрузке или при его перегреве.

Во-вторых, большинство модулей защиты отключают li-ion батарею при напряжении 2.5 Вольта или даже меньше. А для подавляющего большинства аккумуляторов - это ооооочень сильный разряд, такого вообще нельзя допускать.

В-третьих, китайцы клепают эти модули миллионами... Вы правда верите, что в них используются качественные прецизионные компоненты? Или что их кто-то там тестирует и настраивает перед установкой в аккумуляторы? Разумеется, это не так. При производстве китайских плат неукоснительно соблюдается лишь один принцип: чем дешевле - тем лучше. Поэтому если защита будет отключать АКБ от зарядного устройства точно при 4.2 ± 0.05 В, то это, скорее, счастливая случайность, чем закономерность.

Хорошо, если вам достался PCB-модуль, который будет срабатывать чуть раньше (например, при 4.1В). Тогда аккумулятор просто не доберет с десяток процентов емкости и все. Гораздо хуже, если аккумулятор будет постоянно перезаряжаться, например, до 4.3В. Тогда и срок службы сокращается и емкость падает и, вообще, может вспухнуть.

Использовать встроенные в литий-ионный аккумуляторы платы защиты в качестве ограничителей разряда НЕЛЬЗЯ! И в качестве ограничителей заряда - тоже. Эти платы предназначены только для аварийного отключения аккумулятора при возникновении нештатных ситуаций.

Поэтому нужны отдельные схемы ограничения заряда и/или защиты от слишком глубокого разряда.

Простые зарядные устройства на дискретных компонентах и специализированных интегральных схемах мы рассматривали в . А сегодня поговорим о существующих на сегодняшний день решениях, позволяющих оградить литиевый аккумулятор от слишком большого разряда.

Для начала предлагаю простую и надежную схему защиты Li-ion от переразряда, состоящую всего из 6 элементов.

Указанные на схеме номиналы дадут приведут к отключению аккумуляторов от нагрузки при снижении напряжения до ~10 Вольт (я делал защиту для 3х последовательно включенных аккумуляторов 18650, стоящих в моем металлоискателе). Вы можете задать свой собственный порог отключения путем подбора резистора R3.

К слову сказать, напряжение полного разряда Li-ion аккумулятора составляет 3.0 В и никак не меньше.

Полевик (такой как в схеме или ему подобный) можно выколупать из старой материнской платы от компа, обычно их там сразу несколько штук стоит. ТЛ-ку, кстати, тоже можно взять оттуда же.

Конденсатор С1 нужен для первоначального запуска схемы при включении выключателя (он кратковременно подтягивает затвор Т1 к минусу, что открывает транзистор и запитывает делитель напряжения R3,R2). Далее, после заряда С1, нужное для отпирания транзистора напряжение поддерживается микросхемой TL431.

Внимание! Указанный на схеме транзистор IRF4905 отлично будет защищать три последовательно включенных литий-ионных аккумулятора, но совершенно не подойдет для защиты одной банки напряжением 3.7 Вольта. О том, как самому определить подходит полевой транзистор или нет, говорится .

Минус данной схемы: в случае КЗ в нагрузке (или слишком большого потребляемого тока), полевой транзистор закроется далеко не сразу. Время реакции будет зависеть от емкости конденсатора С1. И вполне возможно, что за это время что-нибудь успеет как следует выгореть. Схема, мгновенно реагирующая на коротыш в нагрузке, представлена ниже:

Выключатель SA1 нужен для "перезапуска" схемы после срабатывания защиты. Если конструкция вашего прибора предусматривает извлечение аккумулятора для его зарядки (в отдельном ЗУ), то этот выключатель не нужен.

Сопротивление резистора R1 должно быть таким, чтобы стабилизатор TL431 выходил на рабочий режим при минимальном напряжении аккумулятора - его подбирают таким образом, чтобы ток анод-катод был не меньше 0.4 мА. Это порождает еще один недостаток данной схемы - после срабатывания защиты схема продолжает потреблять энергию от батареи. Ток хоть и небольшой, но его вполне достаточно, чтобы полностью высосать небольшой аккумулятор за какие-то пару-тройку месяцев.

Приведенная ниже схема самодельного контроля разряда литиевых аккумуляторов лишена указанного недостатка. При срабатывании защиты потребляемый устройством ток настолько мал, что мой тестер его даже не обнаруживает.

Ниже представлен более современный вариант ограничителя разряда литиевого аккумулятора с применением стабилизатора TL431. Это, во-первых, позволяет легко и просто выставить нужный порог срабатывания, а во-вторых, схема имеет высокую температурную стабильность и четкость отключения. Хлоп и все!

Достать ТЛ-ку сегодня вообще не проблема, они продаются по 5 копеек за пучок. Резистор R1 устанавливать не нужно (в некоторых случаях он даже вреден). Подстроечник R6, задающий напряжение срабатывания, можно заменить цепочкой из постоянных резисторов, с подобранными сопротивлениями.

Для выхода из режима блокировки, нужно зарядить аккумулятор выше порога срабатывания защиты, после чего нажать кнопку S1 "Сброс".

Неудобство всех вышеприведенных схем заключается в том, что для возобновления работы схем после ухода в защиту, требуется вмешательство оператора (включить-выключить SA1 или нажать кнопочку). Это плата за простоту и низкое потребление энергии в режиме блокировки.

Простейшая схема защиты li-ion от переразряда, лишенная всех недостатков (ну почти всех) показана ниже:

Принцип действия этой схемки очень похож на первые две (в самом начале статьи), но здесь нет микросхемы TL431, а поэтому собственный ток потребления можно уменьшить до очень небольших значений - порядка десяти микроампер. Выключатель или кнопка сброса также не нужны, схема автоматически подключит аккумулятор к нагрузке как только напряжение на нем превысит заданное пороговое значение.

Конденсатор С1 подавляет ложные срабатывание при работе на импульсную нагрузку. Диоды подойдут любые маломощные, именно их характеристики и количество определяют напряжение срабатывания схемы (придется подобрать по месту).

Полевой транзистор можно использовать любой подходящий n-канальный. Главное, чтобы он не напрягаясь выдерживал ток нагрузки и умел открываться при низком напряжении затвор-исток. Например, P60N03LDG, IRLML6401 или аналогичные (см. ).

Вышеприведенная схема всем хороша, но имеется один неприятный момент - плавное закрытие полевого транзистора. Это происходит из-за пологости начального участка вольт-амперной характеристики диодов.

Устранить этот недостаток можно с помощью современной элементной базы, а именно - с помощью микромощных детекторов напряжения (мониторов питания с экстремально низким энергопотреблением). Очередная схема защиты лития от глубокого разряда представлена ниже:

Микросхемы MCP100 выпускается как в DIP-корпусе, так и в планарном исполнении. Для наших нужд подойдет 3-вольтовый вариант - MCP100T-300i/TT . Типовой потребляемый ток в режиме блокировки - 45 мкА. Стоимость мелким оптом порядка 16 руб/шт .

Еще лучше вместо MCP100 применить монитор BD4730 , т.к. у него выход прямой и, следовательно, нужно будет исключить из схемы транзистор Q1 (выход микросхемы соединить напрямую с затвором Q2 и резистором R2, при этом R2 увеличить до 47 кОм).

В схеме применяется микроомный p-канальный MOSFET IRF7210 , без проблем коммутирующий токи в 10-12 А. Полевик полностью открывается уже при напряжении на затворе около 1.5 В, в открытом состоянии имеет ничтожное сопротивление (менее 0.01 Ом)! Короче, очень крутой транзистор. А, главное, не слишком дорогой.

По-моему, последняя схема наиболее близка к идеалу. Если бы у меня был неограниченный доступ к радиодеталям, я бы выбрал именно ее.

Небольшое изменение схемы позволяет применить и N-канальный транзистор (тогда он включается в минусовую цепь нагрузки):

Мониторы (супервизоры, детекторы) питания BD47xx - это целая линейка микросхем с напряжением срабатывания от 1.9 до 4.6 В с шагом 100 мВ, так что можно всегда подобрать под ваши цели.

Небольшое отступление

Любую из вышеприведенных схем можно подключить к батарее из нескольких аккумуляторов (после некоторой подстройки, конечно). Однако, если банки будут иметь отличающуюся емкость, то самый слабый из аккумуляторов будет постоянно уходить в глубокий разряд задолго до того, как схема будет срабатывать. Поэтому в таких случаях всегда рекомендуется использовать батареи не только одинаковой емкости, но и желательно из одной партии.

И хотя в моем металлодетекторе такая защита работает без нареканий уже года два, все же гораздо правильнее было бы следить за напряжением на каждом аккумуляторе персонально.

Всегда используйте свой персональный контроллер разряда Li-ion аккумулятора на каждую банку. Тогда любая ваша батарея будет служить долго и счастливо.

О том, как подобрать подходящий полевой транзистор

Во всех вышеприведенных схемах защиты литий-ионных аккумуляторов от глубокого разряда применяются MOSFETы, работающие в ключевом режиме. Такие же транзисторы обычно используются и в схемах защиты от перезаряда, защиты от КЗ и в других случаях, когда требуется управление нагрузкой.

Разумеется, для того, чтобы схема работала как надо, полевой транзистор должен удовлетворять определенным требованиям. Сначала мы определимся с этими требованиями, а затем возьмем парочку транзисторов и по их даташитам (по техническим характеристикам) определим, подходят они нам или нет.

Внимание! Мы не будем рассматривать динамические характеристики полевых транзисторов, такие как скорость переключения, емкость затвора и максимальный импульсный ток стока. Указанные параметры становятся критично важными при работе транзистора на высоких частотах (инверторы, генераторы, шим-модуляторы и т.п.), однако обсуждение этой темы выходит за рамки данной статьи.

Итак, мы должны сразу же определиться со схемой, которую хотим собрать. Отсюда первое требование к полевому транзистору - он должен быть подходящего типа (либо N- либо P-канальный). Это первое.

Предположим, что максимальный ток (ток нагрузки или ток заряда - не важно) не будет превышать 3А. Отсюда вытекает второе требование - полевик должен длительное время выдерживать такой ток .

Третье. Допустим наша схема будет обеспечивать защиту аккумулятора 18650 от глубокого разряда (одной банки). Следовательно мы можем сразу же определиться с рабочими напряжениями: от 3.0 до 4.3 Вольта. Значит, максимальное допустимое напряжение сток-исток U ds должно быть больше, чем 4.3 Вольта.

Однако последнее утверждение верно только в случае использования только одной банки литиевого аккумулятора (или нескольких включенных параллельно). Если же для питания вашей нагрузки будет задействована батарея из нескольких последовательно включенных аккумуляторов, то максимальное напряжение сток-исток транзистора должно превышать суммарное напряжение всей батареи .

Вот рисунок, поясняющий этот момент:

Как видно из схемы, для батареи из 3х последовательно включенных аккумуляторов 18650 в схемах защиты каждой банки необходимо применять полевики с напряжением сток-исток U ds > 12.6В (на практике нужно брать с некоторым запасом, например, в 10%).

В то же время, это означает, что полевой транзистор должен уметь полностью (или хотя бы достаточно сильно) открываться уже при напряжении затвор-исток U gs менее 3 Вольт. На самом деле, лучше ориентироваться на более низкое напряжение, например, на 2.5 Вольта, чтобы с запасом.

Для грубой (первоначальной) прикидки можно глянуть в даташите на показатель "Напряжение отсечки" (Gate Threshold Voltage ) - это напряжение, при котором транзистор находится на пороге открытия. Это напряжение, как правило, измеряется в момент, когда ток стока достигает 250 мкА.

Понятно, что эксплуатировать транзистор в этом режиме нельзя, т.к. его выходное сопротивление еще слишком велико, и он просто сгорит из-за превышения мощности. Поэтому напряжение отсечки транзистора должно быть меньше рабочего напряжения схемы защиты . И чем оно будет меньше, тем лучше.

На практике для защиты одной банки литий-ионного аккумулятора следует подбирать полевой транзистор с напряжением отсечки не более 1.5 - 2 Вольт.

Таким образом, главные требования к полевым транзисторам следующие:

  • тип транзистора (p- или n-channel);
  • максимально допустимый ток стока;
  • максимально допустимое напряжение сток-исток U ds (вспоминаем, как будут включены наши аккумуляторы - последовательно или параллельно);
  • низкое выходное сопротивление при определенном напряжение затвор-исток U gs (для защиты одной банки Li-ion следует ориентироваться на 2.5 Вольта);
  • максимально допустимая мощность рассеивания.

Теперь давайте на конкретных примерах. Вот, например, в нашем распоряжении имеются транзисторы IRF4905, IRL2505 и IRLMS2002. Взглянем на них поближе.

Пример 1 - IRF4905

Открываем даташит и видим, что это транзистор с каналом p-типа (p-channel). Если нас это устраивает, смотрим дальше.

Максимальный ток стока - 74А. С избытком, конечно, но подходит.

Напряжение сток-исток - 55V. У нас по условию задачи всего одна банка лития, так что напряжение даже больше, чем требуется.

Далее нас интересует вопрос, каким будет сопротивление сток-исток, при открывающем напряжении на затворе 2.5V. Смотрим в даташит и так сходу не видим этой информации. Зато мы видим, что напряжение отсечки U gs(th) лежит в диапазоне 2...4 Вольта. Нас это категорически не устраивает.

Последнее требование не выполняется, поэтому транзистор забраковываем .

Пример 2 - IRL2505

Вот его даташит . Смотрим и сразу же видим, что это очень мощный N-канальный полевик. Ток стока - 104А, напряжение сток-исток - 55В. Пока все устраивает.

Проверяем напряжение V gs(th) - максимум 2.0 В. Отлично!

Но давайте посмотрим, каким сопротивлением будет обладать транзистор при напряжении затвор-исток = 2.5 вольта. Смотрим график:

Получается, что при напряжении на затворе 2.5В и токе через транзистор в 3А, на нем будет падать напряжение в 3В. В соответствии с законом Ома, его сопротивление в этот момент будет составлять 3В/3А=1Ом.

Таким образом, при напряжении на банке аккумулятора около 3 Вольт, он просто не сможет отдать в нагрузку 3А, так как для этого общее сопротивление нагрузки вместе с сопротивлением сток-исток транзистора должно составлять 1 Ом. А у нас только один транзистор уже имеет сопротивление 1 Ом.

К тому же при таком внутреннем сопротивлении и заданном токе, на транзисторе будет выделяться мощность (3 А) 2 * 3 Ом = 9 Вт. Поэтому потребуется установка радиатора (корпус ТО-220 без радиатора сможет рассеивать где-то 0.5...1 Вт).

Дополнительным тревожным звоночком должен стать тот факт, что минимальное напряжение затвора для которого производитель указал выходное сопротивление транзистора равно 4В.

Это как бы намекает на то, что эксплуатация полевика при напряжении U gs менее 4В не предусматривалась.

Учитывая все вышесказанное, транзистор забраковываем .

Пример 3 - IRLMS2002

Итак, достаем из коробочки нашего третьего кандидата. И сразу смотрим его ТТХ .

Канал N-типа, допустим с этим все в порядке.

Ток стока максимальный - 6.5 А. Подходит.

Максимально допустимое напряжение сток-исток V dss = 20V. Отлично.

Напряжение отсечки - макс. 1.2 Вольта. Пока нормально.

Чтобы узнать выходное сопротивление этого транзистора нам даже не придется смотреть графики (как мы это делали в предыдущем случае) - искомое сопротивление сразу приведено в таблице как раз для нашего напряжения на затворе.

Цена: $0.69

Перейти в магазин

Здравствуйте, друзья! Как и обещал, выкладываю обзор миниатюрной зарядной платы. Она предназначена для заряда литий-ионных аккумуляторов. Основная ее фишка в том, что она не «привязана» в какому-либо конкретному типоразмеру - 186500, 14500 и т.д. Подойдет абсолютно любой литий-ионный аккумулятор, к которому можно подключить «плюс» и «минус».

Плата совсем миниатюрная.

Не смотря на наличие USB-micro входа для подачи питания, входные «плюс» и «минус» продублированы еще и клеммами.

Это очень даже неплохой плюс. Объясню почему.

Во-первых, можно взять какой-нибудь блок питания припаять провода напрямую к плате. Поможет в том случае, если USB-micro вход по каким-то причинам окажется неисправным.

Во-вторых, можно взять, скажем, 3 платы, соединить три входных плюса и три входных минуса (получится параллельное соединение), и тогда от одного блока питания можно будет заряжать одновременно 3 аккумулятора. А если хочется зарядить аккумуляторы побыстрее, то можно будет подключить второе и даже третье зарядное устройство.

Выходы на аккумулятор, кстати, тоже можно запараллелить.

Т.е., если соединить те же 3 платы не только на входе, но и на выходе, то можно получить очень мощное зарядное устройство для литий-ионных аккумуляторов. В данном случае это будет зарядка на 3А.

Но один достаточно смешной момент все-таки есть - отверстия на выходных плюсе и минусе - разного диаметра. Почему так - не знаю.

Ну да ладно, это мелочь. Главное чтоб она нормально работала. Кстати, именно этим мы сейчас и займемся - проверкой работоспособности данной платы.

Тест 1. Отсечка по факту полного заряда.

Этот тест я проводил на двух аккумуляторах - оригинальном Панасонике на 3400mAh и на фейковом ноунейме на 5000mAh (а если серьезно - 450mAh).

Синий огонек на плате свидетельствует о том, что заряд аккумулятора завершен. Мультиметр при этом показывает 4,23В. Да, я не спорю, 4,25В на заряженном аккумуляторе это как бы тоже в пределах нормы, но… Вообще выше 4,2В как бы не желательно. А может что-то изменится, если плату отключить?

Почти те самые идеальные 4,2В. Т.е. аккумулятор все-таки заряжен «без излишеств». Но что будет, если Вы забыли снять аккумулятор сразу после его полного заряда? Обратите внимание, на приведенном выше фото почти 6 часов вечера. Подключим зарядку обратно и оставим в таком состоянии на несколько часов.

(спустя 5 с чем-то часов)

Я снова отключил плату, чтоб она не мешала измерениям напряжения на аккумуляторе. И что в итоге?

Никакого повышения напряжения на аккумуляторе не произошло. Может дело в емкости аккумулятора? Что будет, если вместо оригинальных Панасоников зарядить фейковые ноунеймы на 450mAh реальной емкости? Так и сделал - сначала разрядил один такой аккумулятор, а потом поставил заряжаться. И уснул.

А на утро… Ну что ж, отключаем зарядную плату и…

Итак, мы выяснили, что отсечка заряда происходит при достижении напряжения в 4,2В. Но на фото напряжение ниже. Т.е. после окончания заряда никакой «дозаправки» не происходит. Поясню. Некоторые зарядные устройства после окончания заряда продалжают подавать небольшой ток (буквально 10-15mA) для того, чтоб компеенсировать саморазряд аккумулятора. Здесь этого не происходит. Но это не страшно. Избыточный заряд - гораздо страшнее.

Подведем черту:
- заряжает до напряжения 4,19В и производит отсечку
- компенсация саморазряда не производится.

Проще говоря, тест пройден с успехом.

Тест 2. Ток.

Китаяц обещал, что данная плата способна заряжать током до 1А. Проверим? Для этого я почти разрядил один из имеющихся Панасоников (примерно до 3,3В), а потом поставил на зарядку. И что мы имеем?

Наблюдательные спросят - «а зачем ты USB-тестер из цепи убрал? ты ему не доверяешь что ли?». Друзья, этот USB-тестер хорош для замера емкости аккумулятора, но для замера мощности зарядной платы он не подходит. И вот почему. Буквально сразу же я встроил uSB-тестер обратно в цепь и…

… и сила тока заряда упала на целых 200mA. Именно по этой причине я ВСЕГДА ставлю дизлайки к тем видео, где чувак берет USB-зарядку, втыкает туда такой тестер, дает нагрузку, токоотдача не соответствует заявленной (например, заявлено 2A, а отдача составляет 1,5A), а потом еще и диспут с продавцом открывает, мол, как это так, мне 1,5А мало, мне 2А подавай! Я не знаю, с чем это связано, но после того, как я сделал эти 2 фото, я снова убрал USB-тестер из цепи и ток заряда восстановился до 1А.

Так что данной характеристике плата полностью соответствует.

Тест 3. Нагрев.

Ну тут все просто - подождал 10 минут, а потом «снял» температуру с помощью пирометра.

Я не буду разбираться нормально это или нет. Я просто добавлю к ней алюминиевый радиатор охлаждения.

Тест 4. Поведение при работе с избыточно заряженными аккумуляторами.

Друзья, параллельно с обзором на эту зарядную плату, я отщелкиваю еще и обзор на панасоники. Поэтому в этих двух обзорах несколько фотографий будет одинаковыми. Так вот. Ради теста я разрядил один из Панасоников до недопустимо низкого напряжения.

И вот сейчас у любителей данных Панасоников сердце облилось кровь. Ведь они ожидали увидеть разряд до 2,4В, может даже 2,2В, но никак не 1,77В.

Я обнулил счетчик тестера и поставил заряжаться. И вот тут я был приятно удивлен. Я ожидал, что из-за малого сопротивления аккумулятора ток будет запредельно высоким, что даже с USB-тестером ток будет ближе к 2А, что зарядная плата будет работать в бешеных перегрузках, почти на коротком замыкании, и прочую драму, которая заставляет радиолюбителей сидеть и трястись от мыслей вроде «да что ж ты делаешь, ублюдок!» Ничего подобного.

Всего 80mA (ОК, округлим до 100) - так называемый «восстановительный» ток. Фантастика! Т.е. эта плата умеет работать еще и с избыточно разряженными аккумуляторами!

А может она просто глючит? Не думаю. Спустя некоторое время, когда аккумулятор принял в себя примерно 35mAh, ток зашкалил за 1А.

Пока включил цифровик, пока настроил, пока туда-сюда, аккумулятор принял в себя 50mAh. Именно их мы и вычтем из итоговой емкости, которую нам покажет USB-тестер. Но это уже совсем другая история.

Друзья, учитывая цену в 50р - данная микросхема достойна аплодисментов.

Мудрость: чем сильнее бабушка любит внука - тем круче этот внук отыгрывается на своих родителях.

Кинокомпания «Разоблачение» представляет… Триллер «Кабелерез». В главных ролях:

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой